a neighborhood :union: condition for fractional $(k,n',m)$-critical deleted graphs

نویسندگان

yun gao

department of editorial, yunnan normal university mohammad reza farahani

department of applied mathematics, iran university of science and technology wei gao

school of information and technology, yunnan normal university

چکیده

a graph $g$ is called a fractional‎ ‎$(k,n',m)$-critical deleted graph if any $n'$ vertices are removed‎ ‎from $g$ the resulting graph is a fractional $(k,m)$-deleted‎ ‎graph‎. ‎in this paper‎, ‎we prove that for integers $kge 2$‎, ‎$n',mge0$‎, ‎$nge8k+n'+4m-7$‎, ‎and $delta(g)ge k+n'+m$‎, ‎if‎ ‎$$|n_{g}(x)cup n_{g}(y)|gefrac{n+n'}{2}$$‎ ‎for each pair of non-adjacent vertices $x$‎, ‎$y$ of $g$‎, ‎then $g$‎ ‎is a fractional $(k,n',m)$-critical deleted graph‎. ‎the bounds for‎ ‎neighborhood :union: condition‎, ‎the order $n$ and the minimum degree‎ ‎$delta(g)$ of $g$ are all sharp‎.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NEIGHBORHOOD UNION CONDITION FOR FRACTIONAL (k, n′,m)-CRITICAL DELETED GRAPHS

A graph G is called a fractional (k, n′,m)-critical deleted graph if any n′ vertices are removed from G the resulting graph is a fractional (k,m)-deleted graph. In this paper, we prove that for integers k ≥ 2, n′,m ≥ 0, n ≥ 8k + n′ + 4m− 7, and δ(G) ≥ k + n′ +m, if |NG(x) ∪NG(y)| ≥ n+ n′ 2 for each pair of non-adjacent vertices x, y of G, then G is a fractional (k, n′,m)-critical deleted graph....

متن کامل

Independent Set Neighborhood Union And Fractional Critical Deleted Graphs∗

A graph G is called a fractional (k, n′,m)-critical deleted graph if any n′ vertices are removed from G the resulting graph is a fractional (k,m)-deleted graph. In this paper, we determine that for integers k ≥ 1, i ≥ 2, n′,m ≥ 0, n > 4ki+ n′ + 4m− 4, and δ(G) ≥ k(i− 1) + n′ + 2m, if |NG(x1) ∪NG(x2) ∪ · · · ∪NG(xi)| ≥ n+ n′ 2 for any independent subset {x1, x2, . . . , xi} of V (G), then G is a...

متن کامل

A neighborhood condition for fractional k-deleted graphs

Let k ≥ 3 be an integer, and let G be a graph of order n with n ≥ 9k + 3− 4 √ 2(k − 1)2 + 2. Then a spanning subgraph F of G is called a k-factor if dF (x) = k for each x ∈ V (G). A fractional k-factor is a way of assigning weights to the edges of a graph G (with all weights between 0 and 1) such that for each vertex the sum of the weights of the edges incident with that vertex is k. A graph G ...

متن کامل

A toughness condition for fractional (k, m)-deleted graphs

In computer networks, toughness is an important parameter which is used to measure the vulnerability of the network. Zhou et al. [24] obtains a toughness condition for a graph to be fractional (k,m)–deleted and presents an example to show the sharpness of the toughness bound. In this paper we remark that the previous example does not work and inspired by this fact, we present a new toughness co...

متن کامل

A neighborhood condition for fractional ID-[a, b]-factor-critical graphs

A graph G is fractional ID-[a, b]-factor-critical if G − I has a fractional [a, b]-factor for every independent set I of G. We extend a result of Zhou and Sun concerning fractional ID-k-factor-critical graphs.

متن کامل

Toughness Condition for a Graph to Be a Fractional (g, f, n)-Critical Deleted Graph

A graph G is called a fractional (g, f)-deleted graph if G - {e} admits a fractional (g, f)-factor for any e ∈ E(G). A graph G is called a fractional (g, f, n)-critical deleted graph if, after deleting any n vertices from G, the resulting graph is still a fractional (g, f)-deleted graph. The toughness, as the parameter for measuring the vulnerability of communication networks, has received sign...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
transactions on combinatorics

جلد ۶، شماره ۱، صفحات ۱۳-۱۹

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023